Cell Biology THE EFFECTS OF EXOGENOUS ETHANOL AND VITAMIN E ON SOD AND CATALSE ACTIVITIES IN DEVELOPING CHICK BRAIN AND LIVER <u>Matthew Weiland</u> and Robert R. Miller, Jr.*, Hillsdale College, Biology Department, 33 E. College St., Hillsdale, MI 49242, email: bob.miller@hillsdale.edu*. Embryonic ethanol (EtOH) exposure is known to reduce the levels of brain polyunsaturated long-chain membrane fatty acids. These EtOH-induced membrane fatty acid changes correlate with EtOH-induced reductions in brain neuron densities within the cerebral hemispheres and optic lobes and increased levels of brain lipid hydroperoxide levels. Recent work has demonstrated that exogenous treatments of either α -tocopherol or γ -tocopherol attenuated EtOH-induced changes in membrane fatty acid composition and EtOH-induced changes in brain morphology. Thus, EtOH-impaired brain development appears to be associated with EtOH-induced lipid peroxidation. At 0 days of development, fertile chick eggs were injected with a single dose of either saline, EtOH (6.05 mmol / kg egg), EtOH & α -tocopherol (6.05 mmol EtOH/ kg egg & 2.5 μ mol α -tocopherol / kg egg), or EtOH & γ -tocopherol (6.05 mmol EtOH/ kg egg & 2.5 μ mol γ -tocopherol / kg egg), At 18 days of development (embryonic chick brains and liver were removed and assayed for superoxide dimutase (SOD) activity and catalase (CATAL) activity. In embryonic chick liver, an EtOH-induced increase in SOD activity was observed while CATAL activity was unchanged as compared to controls. Exogenous vitamin-E treatments inhibited the EtOH-induced increases in liver SOD activity.